

You should not take Physics

If, you take Physics because

- You don't like other two sciences
- You do well for Physics portion in your End of Year Paper

Who should take Physics?

- If you are curious to understand how the world works. Physics is the basis for most of the modern technology.
- If you are not scared to do basic mathematics like multiplication, division, square root, and trigonometry (rarely).
- At a much higher level, Physics will come into picture even in Chemistry or Biology. So, for those planning ahead for university, you know what to do.

Two blocks, \mathbf{X} and \mathbf{Y}, are resting on a table. The dimensions of the blocks are shown in
centimetres, cm . centimetres, cm .
Each block weighs 0.5 N .

SAMPLE WORK (CALCULATION) G2 standard

(a) Calculate the pressure exerted by block X on the table.

$$
P=\frac{0.5}{2 \times 2} \quad P=0.125 \mathrm{~N} / \mathrm{cm}^{2}
$$

(b) Calculate the density of block \mathbf{Y}.

$$
\begin{aligned}
m & =\frac{w}{g} \quad m \\
& =\frac{0.5}{10} \int_{\text {density of t bock } \gamma}=\quad 2.05 \mathrm{~kg} \quad D=\frac{50}{2 \times 5 \times 2} \\
& =2.5 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

SAMPLE WORK (CALCULATION) G3 standard

A bubble of gas rises from a diver to the surface of a lake, as shown in Fig. 12.3.

Fig. 12.3 (not to scale)
The bubble is 30 m below the surface of the lake.
(a) (i) The pressure of the atmosphere is 100 kPa and the density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. The gravitational field strength g is $10 \mathrm{~N} / \mathrm{kg}$. density of the water is Calculate the pressure in the bubble at a depth of 30 m . given! Wait $P_{m}=P_{\text {out }}$

$$
\begin{array}{rlrl}
P_{\text {wiate }} \rho g h & P_{\text {buthle }} & =100,000+300,000 \\
& =1000 \times 10 \times 30 & & =4.0 \times 10^{5} \mathrm{~Pa} \\
P_{\text {atm }} & =100 \mathrm{kPa} & &
\end{array}
$$

(iii) Fig. 12.5 shows a miner below the surface of the Earth.

Fig. 12.5 (not to scale)
The atmospheric pressure 30 m below the surface of the Earth is almost the same as at the surface. The pressure in water at a depth of 30 m is very different from that
at the surface.

Explain this.

$$
P=\rho g h \text { same for both. } \quad \rho_{\text {air }} \ll \rho_{\text {Hz }}
$$

Densidy of air is much lower than densidy of water. Thus, the same

3 Fig. 3.1 shows ice in a plastic bag being carried by a nurse from a freezer to the operating theatre in a hospital.

Fig. 3.1
(a) (i) The bag is held at rest and a convection current forms in the air outside the bag. On Fig. 3.1, draw an arrow to show the movement of the air at X close to the bag.
(ii) Explain how the convection current is formed.
[P1] Air close to the bag gets cooled by the ice; it contracts/its volume (LONGER EXPLANATION)

[P2] surrounding warmer air being.less dense, rise to be cooled. by .the .

INII

DO YOUR HOMEWORK - it will be YOU who will have to go through with it

- Borrow a Physics textbook from your seniors and browse through the contents that you will be learning and see if that interests you in anyway.
- MAKE AN INFORMED DECISION - it's your choice, so either you enjoy it, or you suffer through it.

I am going to name my son Physics

Then I will be Father of Physics

Enjoy the meme

$\dot{\phi}$

